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Abstract—In this paper, a demand elasticity model is
developed and tested for the dispatch of microgrids. The price
obtained from dispatching the network in a base-case scenario
is used as input to a demand elasticity model; this demand
model is then used to determine the price-responsive demand
for the next iteration, assuming that the load schedule is
defined a day ahead. Using this scheme, trends for demand,
hourly prices, and total operation costs for a microgrid can be
obtained, to study the impact of demand response on unit
commitment. This way, for a microgrid, the effect on the
scheduling of diesel generators and energy storage systems can
be analyzed with respect to price-elastic loads. The results for a
benchmark microgrid show that the proposed 24-hour model
eventually converges to a steady state, with prices and costs at
their lowest values for different scenarios. Moreover, it is
confirmed that elastic demand in a microgrid reduces electricity
price variability and mitigates the need for storage in the
presence of high penetration of renewable energy.

Keywords—Microgrid dispatch, demand response, DSM, energy
storage, demand elasticity, optimization.

Nomenclature

Indexes

d Directly controllable loads.

g Generator unit.

i, j System buses.

s Storage devices.

t, k Time steps.

Variables

δi,t Voltage angle at bus i, time t [rad].

PDCd,t Energy curtailed or shifted of load d at time
t [kWh].

PDS d,t Energy shifted of load d to time t [kWh].

PGg,t Energy generated by unit g at time t [kWh].

PS s,t Energy absorbed or delivered by storage
device s at time t [kWh].

ρi,t Electricity price at bus i, time t [$/kWh].

This work was funded by the NSERC Strategic Network on Smart
Microgrids (NSMG-Net), Canada.

Paper submitted to Power Systems Computation Conference, August 18-22,
2014, Wroclaw, Poland, organized by Power Systems Computation Conference
and Wroclaw University of Technology.

S OC s,t State of charge at storage device s, time t
[kW].

UGg,t Start-up decision for unit g at time t.

VGg,t Shutdown decision for unit g at time t.

Wsc s,t Binary decision on charging s at time t.

Wsd s,t Binary decision on discharge s at time t.

WDd,t Binary curtailment decision of d at time t.

WGg,t ON/OFF status of generator g at time t.

Parameters

ag Fixed cost of generator g [$].

αi Share of elastic demand from total demand
at bus i [%].

Bi, j Susceptance of line i and j [pu].

bg Variable cost of generator g [$/kWh].

Cmin
s ,C

max
s Minimum and maximum storage s charge

level [kWh].

Cd Cost of controllable load d [$/kWh].

Cs Cost of storage per operation [$].

Ei Crossed-time elasticity matrix at bus i.

εit,k Elasticity element t, k of matrix Ei.

ηc
s Input efficiency of storage device s [%].

ηd
s Output efficiency of storage device s [%].

Gg Time for which g must be ON at start to
satisfy MUT g.

Lg Time for which g must be OFF at start to
satisfy MDT g.

Ms Constant for enforcing binding conditions
on s.

MDT g,MUT g Minimum down and up time of unit g.

P0i,t Initial demand at bus i [kW].

PDGi,t Renewable energy injected at bus i at time
t [kWh].

PD
max
d

Maximum power shifted or curtailed for
load d [kW].

PDi,t Demand at bus i at time t [kWh].

PG
min
g , PG

max
g Minimum and maximum power limits of

generator g [kW].

Pline
i, j

Limit of the line between i and j [kW].

PS
min
s , PS

max
s Minimum and maximum capability of

converter s [kW].



Rampdown
g Ramp down limit of g [kW].

Ramp
up
g Ramp up limit of g [kW].

ρi0 Reference electricity price at bus i [$/kWh].

S DCg Shutdown cost of generator g [$].

S UCg Start-up cost of generator g [$].

W0g Status of generator g at t=0.

I. Introduction

With the evolution of smart grids and distributed energy
resources (DER), the concept of demand response (DR) has
gained more significance. It is expected that appliances and
loads in general would have the capability of reacting to
external signals, such as prices and direct scheduling
commands. DR would also provide various system support
services such as operational reserves, frequency response,
and/or congestion management [1].

Most of the practical DR examples are associated with
programs established by government or utilities, which seek
to reduce peak loads or rearrange demand profiles. In the
case of voluntary programs, customers may receive a
financial incentive by adhering to a program and modifying
their demand profiles. Similarly, time-based rates try to sway
energy consumption toward a point of mutual convenience
for both customers and utilities. This is achieved by offering
lower electricity prices at low demand periods, while
charging higher prices when the system is stressed or more
expensive generating units are in operation.

DR programs may be classified as indirect or direct,
depending on whether demand alteration is a choice of
customers or a utility decision, respectively. An example of
indirect DR is the time-of-use (TOU) pricing scheme [2],
which encourages load shifting and curtailment by means of
different price levels during the day. Another indirect
program is the real-time-pricing (RTP) scheme, which
represents the actual short-term conditions of the system [3],
thus promoting price-responsive behavior from the customers.
Among the direct programs worth mentioning are the direct
load control (DLC) and the interruptible load management
programs, which pay an incentive to customers [4], allowing
the utility to directly control a portion of the load.

One of the most important aspects of assessing the effects
of demand responsiveness is how to model both DR and the
system. In [5], an elasticity of electricity data collection is
presented, classifying between short and long term
elasticities, and proving real values estimated for residential
and industrial demand price elasticity from different
published studies. A statistical method for estimating
customers response to pricing signals is developed in [6],
which is then used for calculating an optimal RTP scheme
that improves the social welfare; from this work, a parallel
between DLC programs and instantaneous demand elasticity
effects can be derived. In [7], a data mining method is
proposed to study responsiveness and create a demand
control scheme via pricing signals to control residential
heating system devices; a real case study applies the control
scheme, reducing peak consumption in up to 11%.

DR studies for an isolated system with renewable energy
sources (RES) are conducted in [8] by using two approaches

for load shifting, i.e., direct control and customers demand
elasticity, showing that with DR less units are committed due
to a lower impact of wind variations, thus reducing costs.
The work in [9] shows how oligopoly market efficiency is
increased when its demand is elastic, noticing that there is
reduction in the surplus of producers and consumers. A study
of the effects of elasticity from the planning perspective
considering operational constraints is conducted in [10] and,
by including DR in the short-term optimization models, the
work concludes that more RES can be connected with more
responsive demand. A unit commitment (UC) method with
DR is proposed in [11], which studies economic and
environmental impacts, analyzing different DR programs and
DLC in order to create a DR program priority list for
independent system operators.

So far, most of the work that has been done regarding
DR analysis only examines it in an ex-post basis, not
properly considering the side effects of intelligent devices
and central controllers. In addition, only a few studies
consider DERs, DLC, and ESS, all common components to
be found in a microgrid. Moreover, the studies performed so
far only apply the responsiveness to one day ahead, not
taking into account the fact that sustained responsiveness
may produce an evolutionary response in demand. This
results in a method that is not accurate for estimating the
applications and effects of DR in smart grids and microgrids.
Therefore, the methodology proposed in this work intends to
characterize the possible effects that DR may have over a
microgrid. To this end, a 24-hour cross-time elasticity model
is developed, based on the behavior that load energy
management systems (EMS), such as [12], would have over
the networks. Thus, a simplified version of the full extent
residential model in [12] is used to obtain a 24-hour elastic
model with cross time dependence. This representation of
EMS allows for a suitable analysis of the impact of such
load control systems on the grid/microgrid.

In order to develop a simulation platform for the study
of DR effect on dispatch and vice versa, the mixed integer
linear model from [13] is used as a base to develop a model
suitable for microgrids. Along with the aforementioned UC
model, ESS and DLC are included in the proposed smart-
microgrid model. RES in this model are just considered as a
negative load component added to the energy balance equation.

The rest of the paper is structured as follows: Demand
price-responsiveness and a security-constrained UC model
suitable for microgrids are discussed in Section II, together
with a proposed procedure for studying demand
responsiveness in microgrids. A novel method for estimating
demand elasticity parametrization is presented in Section III.
In Section IV, a benchmark microgrid and the results of
applying the proposed models to this system are presented
and discussed. Finally, Section V highlights the most
important conclusions and proposes some future work
regarding price responsiveness studies in microgrids.

II. MathematicalModeling

A. Price Elasticity of Demand

The following cross-time elasticity matrix Ei is proposed
in [14] and it is used in this work to represent load DR:



Ei =
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(1)

The diagonal elements of Ei, given by εit,t, represent
self-elasticity, i.e., the load i elasticity at time t with respect
to price changes at time t. Similarly, non-diagonal elements
εit,k represent the elasticity of load i at time t with respect to
price variations at time k. Note that εit,k and εk,t do not
represent the same, therefore they are not required to have
the same value.

The general expression proposed here for estimating
demand based on (1) is:

PDi,t = P0i,t
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(2)

This equation describes demand as a combination of elastic
and inelastic demand. Responsiveness is modeled by the total
contribution of percentage changes in prices throughout the
whole period, which is then multiplied by the base load and its
percentage modifier αi. It is important to note that the result
of this elastic term can be positive, zero, or negative, as it
represents the total contribution from all price variations for
the demand at time t.

In order to properly represent DR, diagonal elements εit,t

are positive, while non-diagonal elements εit,k are negative or
zero. In this way, demand variation at hour t is inversely
proportional to price variation at t, meaning that a price
higher than expected at t would translate into demand
reduction at that hour. On the other hand, demand variation
at t caused by price variation at k may only be positive when
the price difference at time k is not negative. The latter
reflects that at a price exceeding the reference ρi0 at time k
would encourage an increment of consumption at any other
hour, in order to reduce the demand at k (load shifting). In
Section III, the estimation of the elasticity parameters to
represent load EMS is discussed in some detail.

B. Operational Model for Microgrids

The objective function for the problem is the minimization
of the total cost of operation as follows:

Cost =
∑

g,t

(

agWGg,t + bgPGg,t + S UCgUGg,t+S DCgVGg,t

)

+

+
∑

s,t

Cs

(

Wsc s,t +Wsd s,t

)

+
∑

d,t

Cd PDCd,t

(3)

The first term in (3) denotes the operational cost of
dispatchable generators, including fixed cost when
dispatched, variable cost of power output, and startup and
shutdown costs. The second term in this equation represents
the costs of operating an ESS, while the last term represents
the costs of using DLC programs on customers’ loads.

1) Demand Supply Balance: The nodal energy balance in
the system, including all the distributed components in the
microgrid, is represented by:

PDGi,t − PDi,t +
∑

s∈i

PS s,t +
∑

d∈i

(

PDCd,t − PDS d,t

)

+

+
∑

g∈i

PGg,t =
∑

j

Bi, j

(

δ j,t − δi,t
) (4)

RES in this model are represented as no cost negative loads.

2) Feeder Limit Constraint: The power transferred from
bus i to j is constrained by line limits, which is given by:

Bi, j

(

δi,t − δ j,t

)

≤ Pline
i, j (5)

3) Power Generation Limits: For dispatchable generators,
the upper and lower operation limits are given as follows:

WGg,t PG
min
g ≤ PGg,t ≤ WGg,t PG

max
g (6)

4) Startup and Shutdown Coordination: The link between
startup and shutdown decisions, and the transition in generator
states from one hour to the next one are given by:

UGg,t − VGg,t = WGg,t −WGg,t−1 (7)

5) Spinning Reserve: For regulation purposes, 10%
spinning reserves are assumed as follows:

1.10
∑

i

PDi,t ≤

∑

g

(

WGg,t PG
max
g

)

(8)

6) Ramp Up and Ramp Down Constraints: These
constraints ensure that the inter-hour changes for the
dispatchable units satisfy necessary ramping limits.

PGg,t − PGg,t−1 ≤ Ramp
up
g (9a)

PGg,t−1 − PGg,t ≤ Rampdown
g (9b)

7) Minimum Up and Down Time: The following set of
equations account for the minimum up time of dispatchable
generators.

Gg
∑

k=1

(

1 −WGg,k

)

= 0 (10a)

t+MUT g−1
∑

k=t

WGg,k ≥ MUT g

(

WGg,t −WGg,t−1

)

∀t = Gg + 1, . . . , 25 − MUT g (10b)
24
∑

k=t

((

WGg,t −WGg,t−1

)

−WGg,k

)

≤ 0

∀t = 26 − MUT g, . . . , 24 (10c)

In (10a), the down time condition for the first Gg time steps
is enforced, preventing the generator from shutting down if it
was ON during the last steps of the previous iteration. Equation
(10b) forces the generator g to be ON at least MUT g steps if
it is switched on. Finally, (10c) provides the condition that



ensures that if a generator is started up within the last MUT g

time steps, it will stay ON until the end of the optimization
time frame.

Analogously to the expressions (10a)-(10c), minimum
down times are described by the following expressions:

Lg
∑

k=1

WGg,k =0 (11a)

t+MDT g−1
∑

k=t

(

WGg,k − 1
)

≤ MDT g

(

WGg,t −WGg,t−1

)

∀t = Lg + 1, . . . , 25 − MDT g (11b)
24
∑

k=t

(

WGg,k − 1 +
(

WGg,t−1 −WGg,t

))

≤ 0

∀t = 26−MDT g, . . . , 24 (11c)

Equation (11a) enforces the down time condition for the first
Lg time steps, preventing the generator from starting if it was
OFF at k = 0. Equation (11b) forces the generator g to be OFF
at least MDT g steps, and (10c) ensures that if a generator is
shutdown within the final MDT g steps, it will stay OFF until
the last period.

8) Energy Storage Systems: The equations to represent ESS
in the model are the following:

Cmin
s ≤ S OC s,t ≤ Cmax

s (12)

−PS s,t η
c
s − Ms Wsd s,t ≤ S OC s,t+1 − S OC s,t (13a)

S OC s,t+1 − S OC s,t ≤ −PS s,t η
c
s + Ms Wsd s,t (13b)

−
PS s,t

ηd
s

− Ms

(

Wsc s,t−W sd s,t + 1
)

≤ S OC s,t+1 − S OC s,t (14a)

S OC s,t+1 − S OC s,t ≤ −
PS s,t

ηd
s

+ Ms

(

Wsc s,t−W sd s,t + 1
)

(14b)

Here, (12) represents the limits in storage capacity level
S OC s,t based on the model shown in [15]. Expressions (13a)
and (13b) represent the energy balance of the storage device
while charging, considering the charging efficiency ηc

s.
Equations (14a) and (14b) take care of the discharging
process, also considering the operation efficiency ηd

s . It is
important to notice that, in order to keep the model linear,
the balance equations have been linearized by using the
“big” M method for alternative sets of constraints [16], and
thus the binding constraints are selected accordingly.

The minimum and maximum capability of ESS energy
injection or absorption is modeled as:

PS
min
s ≤ PS s,t ≤ PS

max
s (15)

The charging and discharging limits considering the battery
SOC and the maximum and minimum storage capacity are
modeled as:

(

S OC s,t −Cmax
s

)

ηc
s

≤ PS s,t (16a)

PS s,t ≤

(

S OC s,t −Cmin
s

)

ηd
s (16b)

Finally, coordination of charge/discharge decision variables
is achieved by,

Wsd s,t +Wsc s,t ≤ 1 (17)

which considers that the ESS cannot charge and discharge at
the same time.

9) Direct Controllable Loads: Utility controllable loads are
modeled as follows,

Typed

∑

t

PDCd,t =
∑

t

PDS d,t (18)

PDCd,t ≤ WDd,t PD
max
d (19a)

PDS d,t ≤

(

1 −WDd,t

)

PD
max
d (19b)

where (18) represents the two types of controllable loads:
Typed = 1 for shiftable loads, and Typed = 0 for curtailable
loads. This equation allows to synthesize both classes of
DLC, and is a variation from the constant energy model
proposed in [17]; in the case of load shifting, this guarantees
that demand that is to be curtailed is reallocated to times
where no curtailment is needed. Expressions (19a) and (19b)
limit the amount of energy directly controlled, depending on
whether the load shed command WDd,t is in place or not.

With all these equations, the traditional security constraint
UC model is modified to represent a microgrid appropriately.
In the next section, a general iterative procedure for studying
the inter-relationship between price and demand
responsiveness is presented, along with the proposed
methodology for estimating indirect DR from smart loads.

C. Iterative Procedure

In contrast to what the literature proposes, it is not
absolutely correct to assume that demand responsiveness
only affects the final demand once. As DR is applied to
consecutive days, smart devices or sensitive customers will
learn from past behaviors and adapt to the prices resulting
from their responsiveness. This changes the procedure to a
more iterative one that takes into account this two-way
influence between demand and price. Thus, as shown in Fig.
1, the operation of the proposed model is to obtain nodal
prices from system simulation, starting with the original
values or the forecast for system demand. Then, by using
these price vector as the input for a demand elasticity model,
the demand for the next iteration is obtained.

III. LoadModel Estimation

The value of the expected price ρi0 in (2) is assumed to
be constant during the whole time frame (24 hours in this
case), as in [10]. By making this assumption, it is ensured
that if the prices were all the same, there would be no price

Security 

Constrained Unit 
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Pd

(0) �(k) 
Demand 

Elasticity 

Model 
Pd

(k+1) 

Fig. 1. Iterative procedure for dispatch and demand correction.
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Fig. 2. Demand elasticity model estimation.

variations, translating into no demand variations. Additionally,
the expected price should be such that sways demand profiles
towards a constant value, agreeing with [7], where the control
objective is to reach a flat demand profile. In order to consider
these two assumptions, the final value for expected customer
price in (2) should be defined by the weighted average of prices
at each node, as shown below:

ρ0i =

∑

t PDi,t ρi,t
∑

t PDi,t

(20)

For modeling DR measures, it has been mentioned in the
literature that the main components that are represented in
DR are water heaters as well as air conditioning, heat and
ventilation. However, the proposed model can be extended
for more complex demand control devices. Thus, after
implementing a model of the load EMS, its response based
on the historical data for RTP prices in a certain grid can be
assessed. Uniform probability distributions for prices at each
hour were considered to determine the impact of varying
prices on such load demands; the ranges of these
distributions are such that comprises the maximum and
minimum prices at each hour, after eliminating the outliers.
Once the distribution is parametrized, several daily price sets
(24 hour price vectors) are generated and recorded; for each
of these vectors, the behavior of the load is obtained. Finally,
in the data generation step, each price is compared to the
reference price ρi0, and each demand vector is compared to
the base load; in this manner, a set of changes in prices and
their corresponding demand variation are created.

After the aforementioned data generation processes, the
parameters for the Ei matrix are obtained. A minimum
squared error optimization model is used for estimating these
parameters based on the difference between the estimated
demand from (2) and the actual demand of the loads with
EMS. This minimization is subjected to the fact that diagonal
elements of matrix Ei are expected to be negative while the
rest are positive, properly characterizing DR as explained in
Section I. The procedure is illustrated in Fig. 2.

IV. Simulation and Results

A. Test Microgrid Description

The test microgrid used for the studies is a modified version
of the CIGRE-IEEE distributed energy sources MV benchmark
network proposed in [18]. In this work, the modified system
is a 13-bus network, by joining together Buses 0, 1 and 12
in the original system, and replacing the HVDC link with an
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Fig. 3. Microgrid test system based on the CIGRE-IEEE DER benchmark
MV network [18].

AC feeder as seen in Fig. 3. The modified microgrid considers
1,710 kW of renewable DERs, 1,339 kWh of ESS installed
capacity, and 5,810 kW in dispatchable thermal capacity.

Among the dispatchable thermal generation, the generator
at Bus 1 is assumed to be the main microgrid source. The
quadratic cost of this large generator (5,000 kW) is here
modeled as a 5 step piece-wise linear generator in order to
maintain the model linear.

In terms of direct controllable loads, a value
corresponding to 7% of the lowest hourly demand for each
bus is assumed to be available for curtailment, and 15% for
shifting, at any time at each of the load buses. These values
were chosen so that only a small percentage of the load is
assumed to be controllable, in order to consider a realistic
scenario. Since DLC has a major impact on the customers’
comfort, the cost of load shifting is assumed to be $2/kWh,
whereas curtailment cost is assumed to be $20/kWh, which
compared to the marginal prices for the microgrid without
DR, these costs are about 8 times and 80 times higher,
respectively. In this fashion, direct control only occurs when
the microgrid load cannot be supplied from the given sources
without load reduction.

Finally, the cost Cs of operating the ESS was estimated by
considering 2 operating cycles per day, an annual rate of return
of 8%, an investment cost of $1,200/kWh, and a lifespan of
3,000 cycles, as per [19]. Using these values for calculating
a daily annuity, the resulting average ESS operating cost is
54¢/kWh.

B. Elasticity Estimation Results

After applying the procedure indicated in Section III for
RTP values in Ontario, Canada, during summer, the resulting
Ei matrix for the EMS proposed in [12] is shown in Table



TABLE I. Demand elasticity matrix estimated for the load EMS in [12].

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 -0.9 0.3 0.4 0.1 0.0 0.1 0.0 0.1 0.1 0.1 0.1

2 0.7 -8.9 1.1 2.0 0.8 0.5 0.1 1.1 0.2 0.7 0.6 1.0 0.9 0.2 0.1 0.1

3 0.3 1.2 -3.7 0.8 0.7 0.0 0.1 0.2 0.3 0.3 0.1 0.2

4 0.1 0.7 0.8 -3.7 0.5 0.1 0.1 0.4 0.6 0.1 0.1 0.1 0.1 0.1

5 0.0 0.2 0.3 -2.6 0.3 0.1 0.1 0.1 0.3 0.0 0.2 0.0 0.2 0.3 0.1 0.0 0.0

6 0.3 0.1 0.1 -2.2 0.1 0.0 0.0 0.2 0.1 0.3 0.3 0.2 0.1 0.0 0.1

7 0.6 0.4 1.7 1.3 -6.4 0.6 0.5 0.2 0.9 0.4 0.2 0.2 0.0 0.4 0.4

8 -0.3

9 0.0 -0.6 0.1 0.0

10 0.1 0.0 0.2 0.2 0.1 -2.3 0.3 0.3 0.1 0.3 0.2 0.1

11 0.3 0.3 0.1 0.1 0.2 -2.7 0.2 0.0 0.6 0.3 0.1 0.2 0.0 0.0

12 0.0 0.5 0.1 0.3 0.1 0.6 -2.2 0.1 0.2 0.2 0.1 0.0 0.0

13 0.1 0.0 0.1 0.0 0.2 0.2 0.2 -1.7 0.1 0.2 0.1 0.1 0.0 0.1

14 0.0 0.0 0.1 0.1 0.1 0.0 0.1 0.3 0.3 0.0 -2.4 0.3 0.1 0.5 0.0 0.0

15 0.1 0.0 0.1 0.1 0.0 0.0 0.2 0.1 0.2 0.1 0.2 -2.0 0.2 0.1 0.0 0.1 0.0

16 0.1 0.1 0.1 0.0 0.1 0.3 0.3 0.1 -1.9 0.0 0.1 0.1 0.1 0.0 0.1 0.2

17 0.0 0.3 0.1 0.1 0.2 0.2 0.3 0.4 0.1 -2.3 0.2 0.1 0.0 0.2

18 0.1 0.1 0.2 0.1 0.2 0.1 0.1 -1.0 0.0

19 0.3 0.0 0.1 0.2 0.1 -1.0 0.0 0.0 0.3

20 0.1 -0.3 0.0

21 0.1 0.0 -0.4

22 -0.4

23 -0.8

24 -0.9

I. As explained in previous sections, these parameter values
were obtained by using the historical hourly Ontario energy
price (HOEP) data available at [20], and a resulting stochastic
model of hourly pricing. This table shows that self elasticities
at 2 AM and 7 AM are at least 2 or 3 times higher than
the average self-elasticity; additionally, from 3 AM to 6 AM,
and then from 10 AM to 5 PM, self elasticities are around
the average, while at every other hour these are low. On the
other hand, for cross-time elasticities, variations in demand
are directly proportional to the variation in prices. Therefore,
given the prices, demand is expected to increase at night and
decrease during the day.

It is worth mentioning that the higher cross-elasticities
are located along the matrix diagonal, meaning that there is a
stronger shifting capability between close hours than there is
between distant hours. Another interesting observation is that,
for the given load EMS, own elasticity values reach values of
-8.9, and are higher than 1 for cross elasticity, which means
that such EMS technologies are capable of increasing
demand elasticity up to 20 times more than the common DR
programs, based on the elasticities reported in [5].

C. Benchmark Microgrid Results

In the base case, Fig. 4 displays how the forecasted
demand evolves, filling up low demand hours by shifting
peaks in demand to the valleys. Since the load model used
considers thermal loads, the net value of demand variation is
not zero due to thermal inertia, thus increasing demand at the
beginning of the 24 hour period and reducing consumption
towards the end of the day. This is the same behavior
exhibited by the load EMS in [12], where the scheduling is
done in a day-ahead basis, resulting in pre-climatizing the
building in the morning to meet the constraints during day
time.

When comparing Fig. 4 and Fig. 5, one can observe how
the demand and prices increase during the night, as expected.
It can also be noticed that the morning peak is extended for
an hour. Note as well that the total system operating cost for
the microgrid decreases as the the demand evolves towards a
fixed profile. When considering the operation under stressful
conditions, the changes in demand are far more drastic,
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Fig. 4. Effect of DR on total demand for an isolated microgrid.
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Fig. 5. Effect of DR on pricing signals for an isolated microgrid.

because both the base load and hourly price variability are
greater. Figure 6 depicts the evolution of net load in the
microgrid showing its convergence to a fixed profile, which
is between the initial and first iteration load profiles. This
can also be seen in Fig. 7 for price corrections.

Under stressful conditions, the ESS operation occurs more
often than for the initial load profile, as shown in Fig. 8. The
reason for this is that the system feeders are saturated at the
initial loading conditions, and after considering responsiveness,
this problem is mostly mitigated. This figure also shows how,
after DR activation, the ESS mainly consumes energy from
the grid, as to ensure the proper usage of the available energy
during periods of high RES generation. It is interesting to note
that in the cases presented here, there was no need for DLC
usage, as the price-elastic loads and ESS were sufficient to
keep the generation-demand balance.
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Fig. 6. Effect of DR on total demand for an isolated microgrid under high
demand and high content of non-dispatchable RES.
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Fig. 7. Effect of DR on pricing signal for an isolated microgrid under high
demand and high content of non-dispatchable RES.
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Fig. 8. Effect of DR on ESS operation for an isolated microgrid under high
demand and high content of non-dispatchable RES.

V. Conclusions

A new model for studying the effect of load
price-elasticity in market prices and dispatch has been
developed. It has been shown here, as in previous papers,
that price-elastic loads may present adverse effects on the
grid, such as the case of low prices, translating into high
demand peaks. Hence, DR is demonstrated to not always be
as beneficial as some reports claim, especially when elastic
demands becomes a significant part of the total system load.
Due to the effect of EMS in intelligent loads, demand will be
reduced at peak-price, resulting in increase peak power
during low-price times, with this phenomenon being more
pronounced as the load elasticity increases.

In the particular case of microgrids, multi-period
price-responsive loads were shown to have similar behavior
as ESS, soothing system variability while minimizing total
operating costs. It was demonstrated that there can be a
prioritization of DR over ESS, depending on whether the
price differences during the day are greater than ESS
operating costs or not. However, in the case when there is no

other way to meet the demand balance at a certain hour, the
prioritization process is nullified.
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